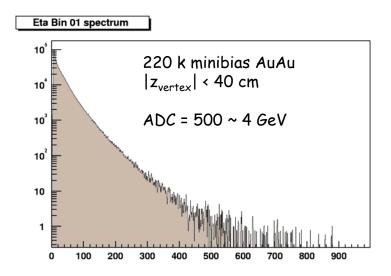
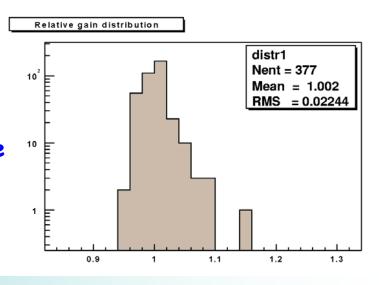
EMC Calibration for the next run

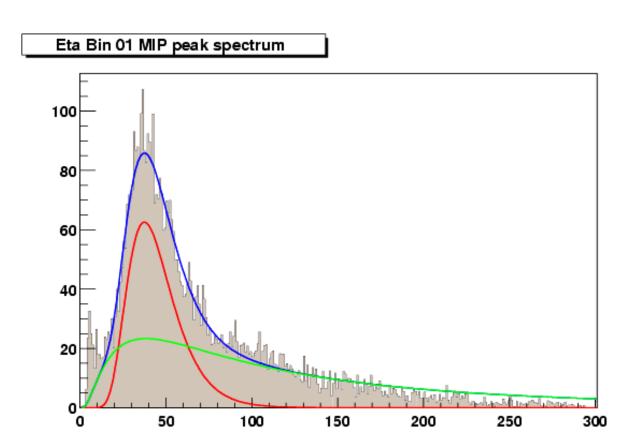

- EMC calibration goes with the analysis of the data
 - EMC dynamic range from ~60 GeV (η = 0) to ~ 90 GeV (η =1)
 - Need to have calibration points in all possible range of energy -> different calibration methods
 - Low energy range ~ 300 MeV -> MIP
 - Medium energy range ~ 2-15 GeV -> electrons, π^{0} 's
 - High energy range >15-20 GeV and up rare processes, direct photons, electrons, etc...

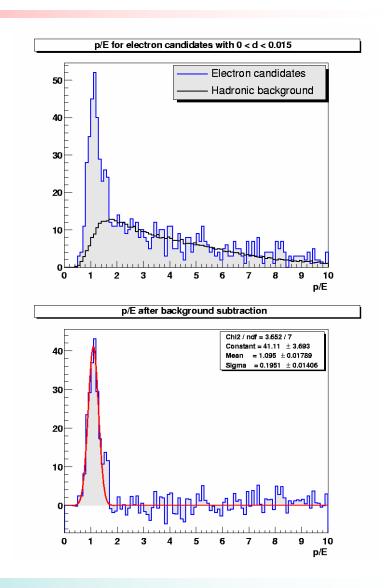
Tower MIP calibration


- Minimum inonizing particles
 - High-p hadrons
 - · Energy deposited ~ 300 MeV of electron equivalent energy
- Method (two steps)
 - EMC Equalization
 - Find relative gain between towers in the same η
 - MIP accumulation
 - · Project high-p tracks into EMC surface
 - · Constrains on track selection to reduce background
 - Track must be isolated in a 3x3 patch
 - Track must be contained in a single tower


Tower calibration - η bin equalization

- Find relative gain between towers in the same η
 - Medium to high multiplicity events
 - Vertex cut to keep tower projective characteristics


- Less number of events needed to get MIP peak
 - Sum statistics over all towers in the same η region
- Check HV settings for trigger
 - Important because it is not possible to apply calibration on trigger signal
 - tower equalization need to be checked to assure uniform trigger response



Typical Tower MIP spectrum

Electron calibration for EMC towers

- Pre-select electrons using TPC dE/dX information
 - Limited momentum range~1.5
- Isolation cuts on EMC towers
 - Track should be isolated in a 3x3 patch
 - Track should be contained in a single tower

SMD calibration

- Strips equalization is more important than absolute calibration
 - Important to define position of shower
- Method
 - Equalize the strips SMD using wire and FEE pulsers
 - Absolute calibration will be done by comparing SMD energy in one module with tower energy in the same module after strips are equalized

EMC Calibration scheme for next run

- Online pre-calibration
 - Take events from event pool
 - Will run on EMC online machines (not fast offline)
 - MIP calibration
 - Electron calibration
 - Gain monitoring
- Offline calibration
 - Wait for analysis production
 - MIP calibration
 - Electron calibration to wider range of energy
 - π^0 analysis
 - Other physics analysis
- Needs about 2-3 M minibias events (from last year pp calibration) to get initial MIP calibration